Acta Cryst. (1966). 21, 814

The Crystal Structure of LiUF₅*

BY GEORGE BRUNTON

Reactor Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.

(Received 18 February 1966)

The compound LiUF₅ crystallizes in space group $I4_1/a$ with unit cell parameters $a_0 = 14.884$, $c_0 = 6.547$ Å. The X-ray density is 6.23 g.cm⁻³ and Z = 16. The U⁴⁺, Li⁺, and 5F⁻ ions occur in positions 16(f). Twenty-one positional parameters, six anisotropic uranium temperature factors, and six isotropic temperature factors were determined from 739 independent reflections measured by the 2θ -scan technique with a scintillometer. The parameters were refined by least squares to an R value of 0.072. Absorption corrections were made for an oblate spheroid with a short 55.8 μ axis, [110], and a 74.4 μ diameter for the circular section containing [110] and [001]. The absorption factor μR was 4.16 in the direction of maximum absorption.

The U⁴⁺ ion has 9F⁻ nearest neighbors with bond distances of 2·26 to 2·59 Å. The F⁻ ions are at the corners of a 14-faced polyhedron which has the form of a triangular prism with pyramids on each of the three prism faces. The Li⁺ ion has 6F⁻ nearest neighbors with bond distances of 1·84 to 2·31 Å. These F⁻ ions are at the corners of an irregular octahedron.

Introduction

The intermediate compound LiUF₅, which was originally described as Li₇U₆F₃₁ in the molten salt system LiF-UF4 (Harris, 1958; Barton, Friedman, Grimes, Insley, Moore & Thoma, 1958; Harris, White & Thoma, 1959; Weaver, Thoma, Insley & Friedman, 1960), melts incongruently and a pure single-phase solid has never been obtained from melts having the composition LiUF₅ or Li₇U₆F₃₁ (Thoma, 1965). The latter composition was inferred from the fact that sodium and potassium form congruently melting $Na_7U_6F_{31}$ and $K_7U_6F_{31}$ in the systems NaF-UF₄ and KF-UF₄ respectively (Barton et al., 1958; Thoma, Insley, Landau, Friedman & Grimes, 1958) and because the LiF-UF₄ phase was found to be uniaxial negative as were the 7AF. 6MF₄ phases. The stoichiometry of $Na_7U_6F_{31}$ and $K_7U_6F_{31}$ can be demonstrated easily by equilibrating mixtures of the end members at these compositions. Several other compounds of alkali fluorides and tetravalent metal fluorides have this formula (Thoma, 1962). Their X-ray powder patterns indicate that they all may be isomorphous and that all are rhombohedral. The structure of one of them, Na₇Zr₆F₃₁, has been determined by Burns, Ellison & Levy (1966).

The stoichiometry of $\text{Li}_7 \text{U}_6 \text{F}_{31}$ was questioned for two reasons: (1) the density calculated from the unitcell parameters and two formula weights per cell (Harris, White & Thoma, 1959) was much lower than the density calculated from the indices of refraction and the measured density (4.73 vs 5.8 g.cm⁻³), and (2) the crystal system and space group (tetragonal, $I4_1/a$) were different from those of the other 7:6 compounds. The value of 5.8 g.cm⁻³ was obtained from pycnometric density measurements on impure crystals. The optical density was estimated from the formula (n-1)/d=K where $K=(k_1P_1)/100+(k_2P_2)/100+etc$, *n* is the average index of refraction, k_i and P_i are respectively the specific refractive energies and weight percentages of the components of the compound, and *d* is the density (Larsen & Berman, 1934). Both of these densities are estimates but were assumed to give at least the lower limit for the true density of LiUF₅. The P_i for the calculation were for Li₇U₆F₃₁. The refractive indices are: $n_0 = 1.554$ and $n_E = 1.550 \pm 0.002$.

Experimental

Crystals of LiUF₅ were grown in a molten salt of the composition Na_{0.05}Li_{0.43}U_{0.26}F_{1.6} because LiUF₅ is easily crystallized as the primary phase at this composition (Thoma *et al.*, 1958). The solidified ingot consisted of acicular crystals (50 to 75 μ in diameter by several millimeters long) of LiUF₅ and a cryptocrystalline matrix. Crystals were separated from the matrix and ground to approximately spherical shape. An oblate spheroid 55·8 μ by 74·4 μ in diameter was mounted along [110] on a General Electric single-crystal orienter equipped with a scintillation-counter detector. All of the independent reflections *hkl* out to $2\theta = 148 \cdot 1^{\circ}$ were measured with Cu K α radiation by the 2θ -scan technique.

The parameters for the unit cell were refined by least-squares fitting of eighteen high angle Cu $K\alpha_1$ (1.5405 Å) reflections to obtain $a_0 = 14.884 \pm 0.002$, $c_0 = 6.547 \pm 0.001$ Å. The calculated density is 6.23 g.cm⁻³ with Z = 16.

The 739 reflection data were corrected for Lorentzpolarization factors and for absorption and were reduced to structure factors, $|F_o|$. A computer program

^{*} Research sponsored by U.S. Atomic Energy Commission under contract with the Union Carbide Corporation.

written by Johnson (1965*a*) enables one to make absorption corrections for triaxial ellipsoids of known orientation. In this case the short axis was [$\overline{110}$] and the two longer equidimensional axes were [110] and [001].

Structure determination

Patterson projections (*hk*0) and (0*kl*) gave the position of the U⁴⁺ ion at general position 16(*f*) with the origin at the center of symmetry: approximately $x=1/_{16}$, $y=1/_{16}$, $z=1/_4$, and four of the five F⁻ ions were placed by the heavy atom technique. The position of the fifth F⁻ ion was determined by a three-dimensional difference synthesis. The Li⁺ ion position was determined by difference synthesis and inferences from three-dimensional stereoscopic views of the structure (Johnson, 1965b).

The imaginary component of anomalous dispersion of uranium for Cu K α X-rays is large (*International Tables for X-ray Crystallography*, 1962), and its contribution was included in the structure factor calculations. The structure factor is given by

$$F_{hkl} = \sum_{N} (f_n + \Delta f' + i\Delta f'')_n (\cos \varphi_n + i \sin \varphi_n)$$

 $B_A = \sum_{N} \Delta f \cos \varphi_n$ for the centrosymmetric case. The

values of $\Delta f' = -4$ and $\Delta f'' = 16$ electrons were used for the anomalous dispersion of uranium (*International Tables*, 1962; Roof, 1961). The normal atomic scattering factors for F⁻ and Li⁺ were taken from the *International Tables* (1962) and for U⁴⁺ from Cromer & Waber (1965).

The atomic positions, anisotropic temperature factors for uranium and isotropic temperature factors for lithium and fluorine were adjusted by the method of least squares with the use of a CDC 1604 computer and the Busing, Martin & Levy (1962) program. The quantity $\Sigma w (F_o - F_c)^2$ was minimized and the summation was taken over all of the independent reflections. The refinement was based on $|F_o|$ and the corresponding weighting factor was the reciprocal of $\sigma(F_o)$ where $\sigma(F_o) = \frac{1}{2}\sigma(F_o^2)/F_o$. The empirical equation

Table 1. Atomic parameters for LiUF₅

Atom	$x(\pm 10^4\sigma)$	$y(\pm 10^4\sigma)$	$z(\pm 10^3\sigma)$	$B_{11}(\pm 10^4 \sigma)$	$B_{22}(\pm 10^5 \sigma)$	$B_{33}(\pm 10^4 \sigma)$	$B_{12}(\pm 10^5 \sigma)$	$B_{13}(\pm 10^5 \sigma)$	$B_{23}(\pm 10^5 \sigma)$
U	0.06176(0.4)	0.05649(0.4)	0.2462(0.1)	0.00026(0.3)	0.00015(3)	0.0027(2)	-0.00004(2)	-0.00017(6)	-0.00006(5)
F(1)	0.0361(9)	0.0523(9)	0.873(3)	0.0017(2))			
F(2)	0.2098(9)	0.1754(9)	0.760(3)	0.0018(2)	Isotropic temperature factors				
F(3)	0.1085(9)	0.1831(9)	0.075(2)	0.0013(2)			$B_{22} = B_{11}$		
F(4)	0.2048(10)	0.0918(10)	0.358(3)	0.0020(3)		$\int B_3$	$a_3 = (c^{*2}/a^{*2})I$	B ₁₁	
F(5)	0.0484(9)	0.1677(10)	0.479(3)	0.0018(2)					
Li	0.068(30)	0.163(30)	0.773(8)	0.0015(8)		J			

Table 2. Interatomic distances in LiUF₅

Bond	d	$\sigma(d)$	Bond	d	$\sigma(d)$
U-F(2)	2·26 Å	0.02 Å	Li-F(1)	1·84 Å	0∙05 Å
U-F(5)	2.26	0.02	Li-F(5)	1.95	0.06
U-F(4)	2.27	0.02	Li-F(5)	2.02	0.05
U-F(3)	2.30	0.01	Li-F(3)	2.09	0.06
U-F(4)	2.31	0.02	Li-F(2)	2.12	0.05
U-F(1)	2.31	0.02	Li-F(5)	2.31	0.05
U-F(3)	2.34	0.01			
U-F(1)	2.47	0.02			
U-F(2)	2.59	0.02			
Nonbonded			Nonbonded		
contacts			contacts		
F(1) - F(1)	2.51	0.03	F(2) - F(4)	2.93	0.02
F(1) - F(3)	2.59	0.02	F(2) - F(5)	3.03	0.02
F(1) - F(4)	2.78	0.02	F(2) - F(5)	3.13	0.02
F(1) - F(2)	2.81	0.02	F(3)-F(5)	2.65	0.02
F(1) - F(3)	2.83	0.02	F(3)–F(4)	2.71	0.05
F(1) - F(4)	2.90	0.02	F(3) - F(3)	2.76	0.05
F(1) - F(5)	2.91	0.02	F(3)–F(3)	2.76	0.05
F(1) - F(3)	2.94	0.02	F(3)-F(5)	2.80	0.02
F(1) - F(2)	3.01	0.02	F(4)-F(4)	2.71	0.05
F(1) - F(5)	3.11	0.02	F(4)–F(4)	2.71	0.02
F(1) - F(2)	3.25	0.02	F(4)-F(5)	2.71	0.02
F(2) - F(2)	2.53	0.03	F(5) - F(5)	2.78	0.03
F(2) - F(3)	2.56	0.02	F(5)-F(5)	2.78	0.03
F(2) - F(5)	2.64	0.02	F(5) - F(5)	2.84	0.03
F(2) - F(4)	2.92	0.02			

Table 3. Observed and calculated structure factorsfor LiUF5

$\sigma^2(F_o^2) = [T + B + 0.0009(T - B)^2] / [A(Lp)^2]$

was used to estimate the variance in this case, where $1/[A(Lp)^2]$ is a factor used in converting counts to structure factors (Lp=Lorentz-polarization, A=absorption factor), T=total and B=background counts (Busing & Levy, 1957).

Fig. 2. Two centrosymmetrically related asymmetric units of LiUF₅. (In order to get maximum separation of the atoms, the unit was rotated 60° counter-clockwise around y and 6° clockwise around x. The pivot point was the symmetry center $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$, and the starting orientation was the conventional cartesian system with x and y in the plane of the illustration and z out toward the viewer as in Fig. 1.)

Fig. 1. Stereoscopic view down the z axis of one unit cell of $LiUF_5$.

1005 FCAL 76 41 305 -498 -310 41 -74 009 479 126 ¥77 ? L 495 -426 -303 -337 L -321 111 320 121 320 L -47 -3
 101
 -111

 101
 -111

 101
 -111

 101
 -111

 101
 -111

 101
 -111

 101
 -111

 101
 -111

 101
 -111

 101
 -111

 101
 -111

 101
 -111

 101
 -111

 101
 -111

 101
 -111

 101
 -111

 101
 -111

 101
 -111

 101
 -111

 101
 -111

 101
 -111

 101
 -111

 101
 -111

 101
 -111

 101
 -111

 111
 -111

 111
 -111

 111
 -111

 111
 -111

 111
 -111

 111
 -111

 111
 -111

 111
 -111
 </tr 227000290 810 196 646 63 107 291 139 198 50 1114 0 816 L 95 - 01 0 814 5 L 253 2 L 277 2 L - 210 - 364 ?... 3140 0 * * 0 ~ • • 22. 1357 13, 1357 ŝ 0 585 395 326 94 118 68 ~ • • 224 2 2.0 -02 1,57 ļ 1 -274 227 -2 -20 2 2 \$20 560 426 411 386 185 658 167 390 0 227 214 312 60 2 * 0 -169 -372 -406 -177 -297 -297 -29 135 60 123 1357 ţ 1 1 ł **`**... 1 3 5 7 ŝ *** 376 ł ~ * * * ۱<u>-</u>35 135 203 201 201 10 613 -390 417 132 -97 53 1357 2 3.8 1.2 1.0 24.0 1 3 2 ~ * * * 21 1357 124 37 26 1357 0 10 L 123 -132 3 2 1 123 -132 FDBS FCAL 0 4 L 1008 -954 39 -33 622 -637 1 F085 76 FCAL 84

 76
 84

 13
 8

 396
 402

 396
 402

 13
 9

 0
 -21

 13
 10

 213
 -226

 13
 12

 7
 -8

 13
 12

 7
 -8

 13
 12

 0
 -25

 14
 12

 0
 -25

 14
 12

 19
 -194

 194
 201

 ; 2.4 0~+0 $\begin{array}{c} L \\ 543 \\ -310 \\ 378 \\ -261 \\ 276 \\ -261 \\ 276 \\ -40 \\ 373 \\ -40 \\ -353 \\ -346 \\ -353 \\ -346 \\ -353 \\ -346 \\ -353 \\ -346 \\ -353 \\ -346 \\ -325$ 2 8 298 368 271 8 250 284 6 507 3454 3454 135
 -84

 -84

 -21

 -21

 -21

 -21

 -21

 -300

 -201

 -201

 -201

 -201

 -202

 -203

 -204

 -204

 -205

 -310

 -310

 -201

 -310

 -201

 -310

 -310

 -310

 -310

 -310

 -310

 -310

 -310

 -310

 -310

 -310

 -310

 -310

 -310

 -310

 -310

 -310

 -310

 -310

 -310

 -310

 -310

 -310

 -310

 -310

 -310

 -310

 -310

< 135 13 2 2 2 ł 194 1 3 5 232 249 -535 197 3 L -94 -35 4 L 725 do 6 L -385 6 L -201 -493 -173 7 L 380 22 22 •74 •50 >35 ş 240 1 024 2 24 1 137 - 345 12 i L 473 447 365 - 334 384 367 12 2 L 685 678 181 188 696 634 104 108 12 3 L 250 251 239 - 233 141 L 40 26 845 - 802 0 45 5 L -374 -211 -241 -188 -425 L 35 L 450 444 L 26 -48 5 ~ • • 35 24 ŝ 135 1240 0 * * 0 2 14 7 324 396 14 8 39 293 66 1 -14 303 -70 2.2 2 35 2 296 292 ; 38 -8 6 L -295 -323 -210 7 L 14 2 4 6 -802 -802 -25 60 FCAL -252 22 : -201 46 17 11 4 L 269 -286 339 -336 FOBS FCAL 297 -286 16 5 L 343 -343 370 372 16 6 L 262 246 553 531 16 7 L 30 58 +085 14 L 650 3L L -382 FCAL L -050 -17 1 3 -10 0 -16 FOBS FCAL 152 165 18 2 L 275 -292 18 2 L 394 379 332 -344 FDBS FCAL 293 300 265 275 17 3 L 48 - 54 FU85 243 16 593 ł 1.2 22 -36 15 10 337 16 1 146 ----580 ţ -139 -139 10,21 -375 -12 L -26 -31 2 - 30 -288

The atomic parameters and temperature factors for LiUF₅ are listed in Table 1, the interatomic distances in Table 2, and the observed and calculated structure factors in Table 3. The discrepancy index $R = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$ is 0.072 for all reflections and 0.060 for 651 measured reflections greater than σ . The standard deviation of an observation of unit weight, $[\Sigma w(F_o - F_c)^2/(n_o - n_v)]^{\ddagger}$ is 2.13 where n_o is the number of reflections and n_v the number of variables.

Discussion

Fig. 1 is a stereoscopic pair of drawings showing the contents of a unit cell. The lines are drawn between the fluoride ions forming the corners of polyhedra surrounding the uranium and lithium ions. The 9F⁻ ions surrounding each U⁴⁺ form the corners of a 14-faced polyhedron which is approximately a triangular prism with a pyramid on each of the three prism faces. This polyhedron is different from the two 8-cornered polyhedra found in UF₄ by Burbank (1951) and by Larson, Roof & Cromer (1964), but similar to those described for U₂F₉ by Zachariasen (1949).

The six F^- ions surrounding Li⁺ form the corners of an irregular octahedron. There are sixteen crystallographically equivalent U⁴⁺ and Li⁺ polyhedra. Each U⁴⁺ polyhedron shares edges with two other U⁴⁺polyhedra and an Li⁺ octahedron; corners with four U⁴⁺ polyhedra and two Li⁺ octahedra and a face with an Li⁺ octahedron. Each Li⁺ octahedron shares edges with three Li⁺ octahedra and a U⁴⁺ polyhedron; corners with two U⁴⁺ polyhedra and a face with a U⁴⁺ polyhedron. Fig. 2 is an illustration of two centrosymmetrically related asymmetric units of LiUF₅.

References

- BARTON, C. J., FRIEDMAN, H. A., GRIMES, W. R., INSLEY, H., MOORE, R. E. & THOMA, R. E. (1958). J. Amer. Ceram. Soc. 41, (2), 63.
- BURBANK, R. D. (1951). USAEC Report No. K-769, Oak Ridge, Tennessee.
- BURNS, J. H., ELLISON, R. D. & LEVY, H. A. (1966). In the press.
- BUSING, W. R. & LEVY, H. A. (1957). J. Chem. Phys. 26, 563.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). USAEC Report ORNL TM-305. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104.
- HARRIS, L. A. (1958). USAEC Report ORNL-CF-58-3-15. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- HARRIS, L. A., WHITE, G. D. & THOMA, R. E. (1959). J. Phys. Chem. 63, 1974.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- LARSEN, E. S. & BERMAN, H. (1934). The Microscopic Determination of Nonopaque Minerals. 2nd ed. U.S.G.S. Bulletin 848.
- LARSON, A. C., ROOF, R. B. Jr. & CROMER, D. T. (1964). Acta Cryst. 17, 555.
- JOHNSON, C. K. (1965a). Unpublished CDC 1604 computer program.
- JOHNSON, C. K. (1965b). USAEC Report ORNL-3794. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- ROOF, R. B. Jr. (1961). Acta Cryst. 14, 934.
- THOMA, R. E., INSLEY, H., LANDAU, B. S., FRIEDMAN, H. A. & GRIMES, W. R. (1958). J. Amer. Ceram. Soc. 41, (12), 538.
- Тнома, R. E. (1962). Inorg. Chem. 1, 220.
- THOMA, R. E. (1965). Personal communication.
- WEAVER, C. F., THOMA, R. E., INSLEY, H. & FRIEDMAN, H. A. (1960). J. Amer. Ceram. Soc. 43, (4), 213.
- ZACHARIASEN, W. H. (1949). Acta Cryst. 2, 390.